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Abstract

This study considers the relationship between the time-averaged and phase-averaged flow fields in turbulent backward-facing step
flow under the influence of periodic perturbation. Attempts are made to clarify the interaction between organized vortex motion and
turbulence statistics such as Reynolds stress. The velocity fields are measured using a particle imaging velocimeter (PIV) for three
selected perturbation frequencies, one corresponding to the most effective frequency in terms of the reduction of reattachment
length, one below it and another above it. The evolution of organized vortex motion due to the imposed perturbation is found
remarkable except for the case of perturbation at the highest frequency, at which the organized motion dissipates so quickly behind
the step that the flow is not altered. At the most effective perturbation frequency, the regions of large Reynolds stress appear as a
result of strong stretching between successive vortices caused by the perturbation. It is concluded that the change in the mean
velocity field due to the organized fluid motion alters the production rate of Reynolds stress, which is a key effect of the perturbation
on turbulent separated flow. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

The effect of periodic perturbation on the turbulent sepa-
rated flow has been investigated in various types of flows. Even
for the backward-facing step flow alone, numerous studies
have been published. Their common result is that the reat-
tachment length behind the step is remarkably reduced when
the frequency of the imposed perturbation falls in a certain
range. As summarized in Table 1, the most pronounced effect
is obtained when the normalized perturbation frequency is
close to St =2 0.2, with St being the Strouhal number based on
the maximum velocity and the step height. Although there are
a few exceptions, the value for the optimum perturbation
frequency seems to be influenced neither by Reynolds number
nor by the method to realize the perturbation.

A similar tendency is found in other separated flow con-
figurations. Attempts have been made to explain the reason for
this frequency characteristic from the viewpoint of the dy-
namics of large-scale spanwise vortex structures in the sepa-
rated shear layer (Bhattacharjee et al., 1986; Sigurdson, 1995;
Chun and Sung, 1996, 1998; Kiya et al., 1997; Wu et al., 1998).
On the other hand, the measured turbulence statistics indicate
that the perturbation enhances the turbulent momentum
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transfer in the shear layer, resulting in earlier flow reattach-
ment (Yoshioka et al., 1999). However, the relationship be-
tween vortex dynamics and the modification of the structure of
turbulence field remains unexplored.

In turbulent flows associated with oscillatory motion with a
known frequency, Hussain and Reynolds (1970) proposed a
method of three-level decomposition: The instantaneous ve-
locity #; is expressed as a sum of the mean velocity U;, a pe-
riodic component of velocity fluctuation #;, and turbulent
fluctuation u; as i = U; + i; + u;. Analogously to the Rey-
nolds-averaging practice, the momentum equations for tur-
bulent flow with periodic oscillation are obtained by
substituting the expression for instantaneous velocity in the
Navier-Stokes equation and then average the whole equation
over time. The resulting equation contains a term denoting the
divergence of u;u;, i.e., the cross-correlation of the periodic
velocity fluctuation, and it is interpreted as the momentum
transport due to organized fluid motion. The effect of the pe-
riodic perturbation imposed in the separated shear layer may
be represented by this term. However, since the mean velocity
field is altered by the existence of the perturbation, it is also
expected that the turbulence structure changes as well. It is
therefore considered that the effect of the periodic perturbation
in separated flow as represented by a reduction of the reat-
tachment length is a consequence of the combination of these
two effects.

In a preceding paper (Yoshioka et al., 1999), it has been
shown that the effect of the perturbation is most remarkable
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Notation u; fluctuating velocity component
wu;  Reynolds stress
1 perturbation frequency Ve injection velocity at the slit exit
H step height Ve amplltpde of the. velocity of the perturbation
P; production rate of Reynolds stress x, y  Cartesian coordinates
Re Reynolds number, Re = U H /v Greeks
St Strouhal number, St = fH /U. ¢ phase angle of the oscillation
Efc mean velocity at thf; cenAter of the}nlet/channel 7, molecular stress
U; instantaneous velocity, #; = U; + ; + u, = U +u = v kinematic viscosity
(U) +u
U; mean velocity component Superscripts
i; periodically fluctuating component of velocity - time-averaging
u turbulent fluctuating component of velocity () phase-averaging
Table 1
Most effective perturbation frequency for separation control in backward-facing step flow*
Author(s) Method Re Expansion ratio Optimum St
Roos and Kegelman (1986) FP 3.9 x 10* 0.22
Bhattacharjee et al. (1986) EA 2.6-7.6 x 10* 1.1 0.2-0.4
Hasan and Khan (1992) 10 3.0 x 10* 1.07 0.185
Hasan (1992) 10 1.1 x 10* 1.07 0.185
Honami et al. (1993) FP 3.85 x 10* 1.5 0.200
Chun and Sung (1996) 10 1.3-3.3 x 10* 1.5 0.25-0.275
Rhee and Sung (2000)" 10 3.3 x 10* 1.5 0.275
Yoshioka et al. (1999) 10 1.8-5.5 x 10° 1.5 0.18-0.22
#EA: External acoustic forcing; IO: Internal oscillator; FP: Oscillating flap.
® Computational study.
when the increase in Reynolds shear stress is large in the time- ((
averaged flow field. This paper introduces phase-averaging to J )
distinguish the contribution by the periodic fluid motion and Flow Ay
th.e turbul@nt one. Provided thqt vortex shedding is .correlated |::> 2H Periodic perturbation
with the introduced perturbation, the representative vortex Tripping wire
structure can be extracted by averaging the turbulent flow field (( »X

in synchronization with the period of perturbation. To this
end, this study makes use of a two-dimensional particle
imaging velocimeter (PIV) to capture the instantaneous vortex
motion in the separated shear layer and applies phase-aver-
aging to the data taken over time. The mechanism by which
turbulence evolves is discussed in connection with the orga-
nized fluid motion that appears in the phase-averaged velocity
field.

2. Experiments

The experiments were performed in a test section consisting
of a backward-facing step (cf. Fig. 1) mounted in a closed-loop
water channel as described in (Yoshioka et al., 1999). The
channel expansion ratio at the step was 1.5, the height and
span of the inlet channel were 2H and 12H, respectively, with
the step height # = 20 mm. Cartesian coordinates, x- and y-
axes, were taken in the streamwise and wall-normal directions,
respectively, originating from the step edge.

A slit the width of the span and 1 mm wide was opened at
the step edge. The periodic perturbation was introduced
through this slit as a direct, alternating suction/injection in the
direction inclined 45° relative to the x-axis. Driving a piston of
a syringe that was moved by a digitally controlled electronic
motor generated the perturbation. The generated perturbation
was designed to follow the expression:

Ve = Vesin (2nfet) = Vesin @, (1)

))
L—I=20mm
50H 8%

Fig. 1. Schematic of the test section.

T
Reattachment Xr
point

where v, indicates the injection velocity at the slit exit, V. the
amplitude of the velocity and f; the frequency.

An in-house-made two-dimensional PIV was employed to
measure the velocity field. The details of the instrumentation is
described in an earlier paper (Yoshioka et al., 1999). To extract
the organized fluid motion, a phase-averaging procedure was
applied in addition to the conventional time-averaging. Due to
restrictions on the data storage system, however, the results are
processed only for the four representative phase angles of the
perturbation, ¢ =0, ©/2, n, and 3n/2 (cf. Eq. (1)). Typically
1000 samples were used for evaluating the statistics.

The Reynolds number Re based on the mean velocity at the
center of the inlet channel U, and H was set constant to
3.7 x 10%. The examination of the profile of the mean velocity
and Reynolds stress has confirmed that the oncoming flow is
fully developed turbulent channel flow. The amplitude of the
perturbation was held at V., = 0.30U, throughout the experi-
ment. The frequency of the perturbation was varied to cover
the most effective frequency range. The detailed velocity
measurements were performed at three particular perturbation
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frequencies, St = 0.08, 0.19, 0.30, with St being the Strouhal
number, St = f.H/U..

3. Results and discussion
3.1. Time-averaged flow field

Fig. 2 shows the time-averaged velocity vector distribu-
tions. The results are compared for the experiments with and
without perturbation. The triangular mark on the bottom of
each figure indicates the location where the streamwise ve-
locity component observed along the row of measuring points
nearest the wall changes its sign. The location of the triangle
roughly indicates the reattachment point, although it cannot
be specified accurately due to the difficulty in measuring the
velocity in the vicinity of the bottom wall. The location of the
flow reattachment is about x = 5.5H for the experiment
without perturbation (cf. Fig. 2(a)), while it shifts upstream
to x = 3.8H when the perturbation at St = 0.19 is applied (cf.
Fig. 2(c)). The other two cases, St = 0.08 and 0.30, indicate
slightly weaker effect, resulting in more moderate reduction of
the reattachment length from that obtained without pertur-
bation.

As discussed by Yoshioka et al. (1999), the shorter reat-
tachment length is a consequence of the enhancement of mo-
mentum transfer by the imposed perturbation, which appears
as an increase in the Reynolds stress component —uv that
represents the transport of the streamwise component of mo-
mentum in the transverse direction. The argument is supported
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Fig. 2. Time-averaged velocity vector distribution: (a) without per-
turbation, and (b) perturbation at St=0.08, (c) St=0.19, (d)
St = 0.30.

by the production rate of the Reynolds stress component of
concern

PIZ = —Uzaa—(){— uzaa—z

the distribution of which is presented in Fig. 3. It is clear that
the imposed perturbation contributes to the increase in the
Reynolds stress, as its production rate is larger for the condi-
tions with the perturbation than that without it. The difference
in the perturbation frequency appears in the magnitude and
the location of maximum value of P, . The most pronounced
increase found in the case of the perturbation at St =0.30
suggests that the more remarkable and more rapid increase of
—uv behind the step is provided by the higher perturbation
frequency. It may follow that the perturbation with the higher
frequency provides stronger effects and hence results in the
shorter reattachment length. However, this is contradictory to
the findings shown in Fig. 2. The intensity of —#v is not solely
determined by the production rate, but by the balance of
production, dissipation, redistribution to other components
and spatial transport due to diffusion. Hence, it is more
straightforward to examine the total amount of Reynolds
shear stress itself to clarify the influence of the perturbation.
Here, the integrated Reynolds shear stress flux Fj, that is de-
fined by

1 2H
Fo=gg [, U

represents the left-hand side of the transport equation for
Reynolds stress and therefore accounts for the balance among
all effects appearing on the right-hand side of the transport

2.0
(a)
1.0
{ 0.02
= 0.0 = 0.01
-1.0 : : y . : :
0.0 2.0 4.0 6.0 8.0 10.0
x/H
2.0
(b)
10 0,03 902
Y
= 0.0 0.01
- —
-1.0 'y
0.0 2.0 4.0 6.0 8.0 10.0
x/H
8.0 10.0
x/H
2.0
(d)
T 1.0
=
0.0
-1.0

0.0 20 4.0 6.0 8.0 10.0
x/H

Fig. 3. Production rate of —uv: (a) without perturbation, perturbation
at (b) St = 0.08, (c) St =0.19, (d) St = 0.30.
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equation. Besides, integrating over the cross-section and ne-
glecting the diffusion transport in the x-direction against that
in y-direction, one can isolate the imbalance in the source
terms of the —uv equation from the transport terms. The
streamwise variation of Fj, is presented in Fig. 4, comparing all
cases. It is obvious that the perturbation indeed increases the
value of —uv from the original state, though its streamwise
development and its dependency on the perturbation fre-
quency differs from what has been observed in the distribution
of P,. Namely, the largest value is achieved by the lowest
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Fig. 4. Streamwise variation of the net transport of —uv. Solid line;
without perturbation, O; St = 0.08, @; St = 0.19, A; St = 0.30.
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Fig. 5. Phase-averaged streamline at St = 0.08: (a) ¢ = 0; (b) ¢ = 1/2;
© ¢ =m; (d) ¢ =3n/2.

frequency, St = 0.08 (indicated by open circles), near the
streamwise location x/H = 6.0, where roughly three times
more turbulent shear stress is transported compared to the
flow without perturbation (solid line). It is noteworthy that the
most effective perturbation frequency in terms of the reduction
of the reattachment length, St = 0.19 (closed circles), does not
provide the highest peak. Instead, the increase in Fj, immedi-
ately behind the step provided by this perturbation is most
remarkable among all the cases. The perturbation at the
highest frequency, St = 0.30, yields the weakest influence on
the flow as a whole, which contradicts to the observation of the
Py, distribution. The results imply that the fluid motion caused
by the perturbation at higher frequency provides a strong
dissipation at the same time, so that the evolution of —uv does
not occur.

3.2. Phase-averaged flow field

The streamline pattern evaluated from the phase-averaged
velocity field is shown in Fig. 5, where the results at the lowest
frequency, St = 0.08, are illustrated; the four graphs represent
the four perturbation phase angles in sequence. At each in-
stant, the wavy streamline patterns are observed. Correlated to
the wavy patterns, closed streamline patterns are developed
behind the step. They travel downstream, as denoted by the
dashed lines, at a velocity roughly equal to 0.3U.. The closed-
loop pattern disappears near the time-averaged reattachment
point. As a consequence, the time-averaged recirculation re-
gion behind the step is divided into a few closed streamline
patterns at any instant of the phase-averaged field. When
disturbed by the perturbation St = 0.19 shown in Fig. 6, the

y/H
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0.0 20 40

Fig. 6. Phase-averaged streamline at St = 0.19: (a) ¢ = 0; (b) ¢ = 1/2;
() ¢ =m; (d) ¢ =3n/2.
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wavy patterns of the streamline and the associated closed-
loops are also observed, but the wavelength of the streamline is
shortened compared to the former case. Under this condition,
the number of vortices per unit time existing in the recircula-
tion region is increased and there are at least two closed-loop
patterns at any instant.

3.3. Phase-averaged Reynolds shear stress

When ensemble averaging in synchronization to a known
frequency is applied to the Navier-Stokes equation, the
equation for fluid motion associated with the perturbation at
constant frequency is obtained

Pl + ) =~ A = ) 5 ), (2

where (t;;) is molecular stress related to the ensemble-mean
strain-rate tensor. By analogy to Reynolds stress in the steady
turbulent flow field, it is natural to interpret the phase-aver-
aged product of the fluctuating velocity components, the sec-
ond term on the right-hand side of Eq. (2), as the additional
momentum transfer due to turbulent motion. Unlike the
Reynolds stress in steady flow, this quantity is a function of
time or of the phase angle ¢ and is called the phase-averaged
Reynolds stress herein.

The distribution of the phase-averaged Reynolds shear
stress as evaluated from the experiment for the perturbation at
St = 0.08 is presented in Fig. 7. Only the shear stress compo-
nent —(u'v') is considered here. The dashed lines in the figure
are the trace of the streamline pattern indicated in Fig. 5. As a
whole, the distribution of —(#/'v') resembles that of —uv in the
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Fig. 7. Phase-averaged Reynolds shear stress —(u'v')/U? at St = 0.08:
@ ¢ =0; (b) p=m/2; (c) g =m; (d) § = 3m/2.

experiment without perturbation, though a few distinctive
features exist: There are menisci in the contour behind the step
and they are located between the dashed lines, indicating that
the phase-averaged Reynolds stress travels with the streamline
patterns. In the case with the perturbation frequency at which
the reattachment length is reduced the most, St = 0.19 shown
in Fig. 8, the local-maximum regions of the phase-averaged
Reynolds shear stress are more densely distributed compared
with those in the case of St = 0.08.

To shed light on the relationship between the turbulent field
and the periodic perturbation, the production rate of the
phase-averaged Reynolds stress was investigated next. In
analogy to the Reynolds stress equation, one can derive the
transport equation for the phase-averaged Reynolds stress.
The production rate appearing in the resulting equation is
expressed as:

o{u ov
<P12> — _<v/2>é_y>_ <ul2>%‘

Figs. 9 and 10 show the distribution of —(P;,) at St =0.08
and St = 0.19, respectively. In the case of St =0.19, the dis-
tribution of —(Py;) seems to be similar to that of —(u/'v') (cf.
Fig. 8) indicating that the phase-averaged Reynolds stress is
indeed generated by this term. The resemblance between the
distribution of the Reynolds stress and that of the production
rate is remarkable in the location of maxima which are lo-
cated between the two neighboring vortices behind the step
(denoted by the dotted lines, cf. Fig. 6). The region between
two neighboring vortices is characterized by significant strain
fields and hence remarkable production of Reynolds stress,
which is compared to the “braids” appearing between two
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Fig. 8. Phase-averaged Reynolds shear stress —(u'v')/U? at St = 0.19:
(@ ¢ =0;(b) g =1/2; (c) ¢ =m; (d) ¢ =3mn/2.



306 S. Yoshioka et al. | Int. J. Heat and Fluid Flow 22 (2001) 301-307

2.0
(a)
< 1.0 003 o2 y
-1.0 : L A ‘ : :
0.0 2.0 \ 4.0 6.0 8.0 10.0
\ x/H
20— 4
(b) 003
1.0 0.04 "7 o o)
E B
NS
0.0
-1.0 >
0.0 2.0 4.0\ 6.0 8.0 10.0
\\ x/H
2.0 T
(©) \
1.0 003 002
s \
> 0.0
1.0 | i
0.0 2.0 4.0 \6.0 8.0 10.0
\ \ x/H
20 \ \
(d) ‘ \
L 10 0.03 \\ 0.02 \\
B —— 001 |\
0.0 - . \
-1.0 -
0.0 2.0 4.0 6.0 8.0 10.0
xX/H

Fig. 9. Phase-averaged production rate of Reynolds shear stress
—(P) -H/U? at §t=0.08: (a) ¢ =0; (b) p=n/2; (c) ¢ =m (d)
¢ =3m/2.

co-rotating vortices of a free mixing layer (e.g., Caulfield and
Kerswell, 2000). The above observation points to the exis-
tence of an indirect effect of the periodic perturbation, i.e.,
the increase of Reynolds stress is realized by the ensemble-
mean vortex pattern due to the imposed perturbation. The
same tendency is also observed in the St = 0.08 case shown in
Fig. 9. The only difference compared to the higher frequency
case is the number density of vortices existing behind the
step. The interaction between the imposed perturbation and
the spanwise roller-and-braid structure that develops imme-
diately behind the step (Neto et al., 1993) is considered to be
of primary importance in determining the frequency charac-
teristics, though the lack in spectral information hinders the
decisive conclusion to be drawn within the framework of the
present experiment.

In general, the above-mentioned indirect effect of the peri-
odic perturbation is less appealing compared to the direct ef-
fect, i.e., the periodic fluid motion itself. However, a similar
experiment conducted in turbulent flow in an asymmetric
plane diffuser indicates that the magnitude of these two effects
varies with the perturbation frequency; the indirect effect plays
an equally important role as the direct one under the condition
at which the perturbation realizes its maximum effect (Obi et
al., 1997). This experiment corresponds to this condition and it
is interesting to estimate these two individual effects separately.
However, the presently available data set is too sparse to
perform the time-averaging of the phase-averaged quantities
with sufficient accuracy. Nevertheless, this result points to the
fact that the interaction of the organized vortex structure
generated by the perturbation provides the additional pro-
duction of turbulent fluid motion, and it is considered to be an
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Fig. 10. Phase-averaged production rate of Reynolds shear stress
—(Pu) - H/U} at St=0.19: (a) ¢ =0; (b) ¢ =7/2; (c) ¢ =m; (d)
¢ =3mn/2.

important mechanism of momentum transfer enhancement in
this kind of flow.

4. Conclusion

The relationship between turbulence statistics and oscilla-
tory, organized fluid motion is experimentally investigated in
the periodically perturbed turbulent separated flow over a
backward-facing step. The velocity fields are measured by a
PIV and phase-averaging procedure is introduced to extract
the fluid motion that is synchronized with the perturbation.
The promotion of the flow reattachment in time-averaged flow
is well correlated with the increase in the production of Rey-
nolds shear stress. The phase-averaged flow field reveals that
the organized fluid motion exists in the separated shear layer.
The region with strong deformation appears between the
vortex structures, which promote the production of Reynolds
stress. The consequent enhancement of momentum transfer is
considered to be an important effect of the periodic pertur-
bation imposed on the turbulent separated flow.
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